

Study of Z and Higgs boson decaying into $(J/\psi)\gamma$ in pp collisions at $\sqrt{s}=13TeV$

Hao-Ren Jheng, Chia-Ming Kuo, Andrey Pozdnyakov for the CMS collaboration Department of Physics, National Central University, Jhongli, Taiwan

ABSTRACT

A search for the decays of the SM Z and Higgs bosons decaying to $(J/\psi)\gamma$, with subsequent decay of the J/ψ to $\mu+\mu-$, is presented. The analysis is performed using data recorded by the CMS detector from pp collisions at center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.86 fb⁻¹.

INTRODUCTION

Diagrams SM rare decay - Suppressed by Zyy* coupling Experimental benchmark for the Higgs

decay

Physical Significance Previous Results Quarkonium production $\mathbf{Z} \rightarrow \mathbf{J}/\mathbf{\psi}\gamma$ ATLAS in pp collisions

Expected Observed 2.0×10⁻⁶ 2.6×10⁻⁶

Rare decay of the Higgs boson Alternative probe to **Higgs-Charm** coupling

• High-p_T photon and J/ψ are produced in back-to-back direction Signatures • Muons from J/ψ decay will be close to each other spatially

ANALYSIS STRATEGY

Event Selection

Muon-Photon trigger with $p_T^{\mu} > 17$ GeV and $E_T^{photon} > 30$ GeV Trigger $H \rightarrow ZZ \rightarrow 4\ell$ ID, Isolation is applied on μ_{lead} Muon

 $p_T \text{ lead } \mu > 20 \text{ GeV}; p_T \text{ trail } \mu > 4 \text{ GeV}; |\eta^{\mu}| < 2.4;$

Photon Photon MVA ID; $|\eta_{sc}^{photon}| < 2.5$

Kinematic cuts to further suppress the Drell-Yan process with FSR Di-muon mass : $3.0 < m_{\mu\mu\gamma} < 3.2 \text{ GeV}$ $p_T^{\mu\nu}$, $E_T^{photon}/m_{\mu\mu\gamma} > 0.384(0.280)$ for the Z(Higgs) decay

Trigger

- The special trigger was designed for this analysis
 - The efficiency of the single and double muon trigger will be low due to closed-by muons

Tag:Muon

Probe: Muon & Photon \rightarrow Measure the efficiency on

RESULT

Systematic uncertainty

Integrated luminosity	2.5%			
Theoretical uncertainty				
QCD scale, PDF, α _s , decay branching	1.7~6.7%			
Detector simulation, reconstruction, efficiency				
Pile-up weight	0.79~1.4%			
Trigger	3.0~6.5%			
Muon ID/Iso	2.3~3.6%			
Photon MVA ID	1.1~2.0%			
Electron veto	0.45~1.2%			
Signal model				
m _{µµ} , scale	< 0.1%			
m _{µµ} γ resolution	0.80~4.0%			

Ch

The	e expected exclusion upper	limit at 95% C.L
annel	$\sigma(pp \rightarrow Z/H) \times BR(Z/H \rightarrow (J/\psi)_{\gamma} \rightarrow \mu \mu_{\gamma})$	BR(Z/H→(J⁄ψ)γ)
(J⁄ψ) γ	< 6.08 fb (with 1σ band: 4.31 < σ×B < 8.72 fb)	<pre>< 1.80×10-6 (18.1 times the SM prediction) SM prediction = 9.96×10⁻⁸</pre>
(J⁄ψ) γ	< 2.37 fb (with 1σ band: 1.66 < σ×B < 3.43 fb)	<pre>< 7.21 × 10-4 (258 times the SM prediction) SM prediction = 2.79×10-6</pre>

 $\sigma(pp \rightarrow H) = 55.6 \text{ pb}, \sigma(pp \rightarrow Z, m_{\parallel} > 50 \text{GeV}) = 57094.5 \text{ pb}, BR(J/\psi \rightarrow \mu\mu) = 0.059$

Su	mn	nary

A search for the decay of the SM Z and Higgs bosons decaying to $(J/\Psi)\gamma$ is performed.

 The expected upper limits at 95% C.L on branching fraction of $Z(H) \rightarrow J/\psi + \gamma$: 1.80×10⁻⁶(7.21×10⁻⁴), which is 18.1(258) times SM predictions.